无人机目标检测

目标检测

目前,基于深度学习(deep learning)的目标检测技术效果是最好的,这些技术模型可以分成三类:

  1. R-CNN系列,包括R-CNN,Fast R-CNN,以及Faster R-CNN
  2. Single Shot Detector (SSD)
  3. You Only Look Once (YOLO)系列,其中YOLOv3是今天的主角

下面来简单说一下这些模型,SSD这里就不介绍了,感兴趣的话可自行去了解。

R-CNN系列
Faster R-CNN的基本原理

mubiao

上图是Faster R-CNN模型的原理简图,技术细节可参考下面所提及的相关文章。

R-CNN系列的演化路径为:R-CNN → Fast R-CNN → Faster R-CNN

R-CNN 是第一个基于深度学习的目标检测模型,它属于two-stage方法,即将物体识别和物体定位分为两个步骤,分别完成。 详情见Girshick等人的第一篇相关文章:https://arxiv.org/abs/1311.2524,其原理大概为:(1) 预先找出图中物体可能出现的位置,即候选区域 (Region Proposal) 。利用图像中的纹理、边缘、颜色等信息,可以保证在选取较少窗口 (几千甚至几百) 的情况下保持较高的召回率 (Recall) 。(2) 然后将这些候选框送入CNN网络中进行识别分类。

R-CNN 方法的缺点是它太慢了;由于它采用外部的候选框算法,它也不是一个完整的端到端 (end-to-end) 检测器。

Girshick等人于2015年发表了第二篇论文 Fast R-CNN,链接为:https://arxiv.org/abs/1504.08083。相对R-CNN,Fast R-CNN算法有了很大改进,即提高了精确度,并减少了执行前向网络计算所需的时间;然而,该模型仍然依赖于外部的候选框算法。

直到2015年的后续模型 Faster R-CNN 的出现,链接为:https://arxiv.org/abs/1506.01497。通过使用区域生成网络 (Region Proposal Network, RPN)来取代候选框算法,Faster R-CNN 最终成为真正的端到端目标检测器。

虽然R-CNN系列的精确度不断提高,但是R-CNN系列最大的问题是它的速度,即使使用GPU也只能达到5 FPS..

YOLO

YOLO

上图是YOLO模型的原理简图,技术细节可参考下面所提及的相关文章,YOLO官网为:https://pjreddie.com/darknet/yolo/。

为了提高基于深度学习的目标检测器的速度,SSD和YOLO都使用了one-stage策略。

这些算法将目标检测作为一个回归问题,对于给定的输入图像,同时给出边界框位置以及相应的类别。

一般来说,one-stage策略比two-stage策略的精度低,但速度快得多。

YOLO是one-stage检测器的一个很好的例子。

Redmon等人于2015年首次引入了YOLO,论文链接为:https://arxiv.org/abs/1506.02640,详细介绍了一个具有超实时目标检测能力的检测器,在GPU上获得了45 FPS。

YOLO已经经历了许多不同版本的迭代,包括YOLO9000模型,通过联合训练,它能够检测9000种不同类别的目标。虽然YOLO9000的表现有趣且新颖,但在COCO的156类数据集上,只达到了16%的平均精度(mAP)。虽然YOLO9000可以检测9000种类别,但是它的精度不是很理想。

最近,Redmon和Farhadi发表了一篇新的YOLO论文——YOLOv3: a Incremental Improvement(2018),链接为:https://arxiv.org/abs/1804.02767。YOLOv3比之前的模型更大了,但在我看来,它是YOLO目标检测器系列中最好的一个。

相比之前的算法,尤其针对小目标情况,YOLOv3的精度有显著提升。

基于OpenCV的快速实现

T我们将在这篇博客使用在COCO数据集上预训练好的YOLOv3模型。

COCO 数据集包含80类,有people (人),bicycle(自行车),car(汽车)……,详细类别可查看链接:https://github.com/pjreddie/darknet/blob/master/data/coco.names。

测试程序中的文件:

百度云:https://pan.baidu.com/s/1MPG89T6CrabYKLCsv_g5ZA

官网下载:https://pjreddie.com/darknet/yolo/

下面利用OpenCV来快速实现YOLO目标检测,我将其封装成一个叫yolo_detect()的函数,其使用说明可参考函数内部的注释。网络的模型和权重都已上传至百度网盘。

`# -- coding: utf-8 --

载入所需库

import cv2
import numpy as np
import os
import time

def yolo_detect(pathIn=’’,
pathOut=None,
label_path=’./cfg/coco.names’,
config_path=’./cfg/yolov3_coco.cfg’,
weights_path=’./cfg/yolov3_coco.weights’,
confidence_thre=0.5,
nms_thre=0.3,
jpg_quality=80):

'''
pathIn:原始图片的路径
pathOut:结果图片的路径
label_path:类别标签文件的路径
config_path:模型配置文件的路径
weights_path:模型权重文件的路径
confidence_thre:0-1,置信度(概率/打分)阈值,即保留概率大于这个值的边界框,默认为0.5
nms_thre:非极大值抑制的阈值,默认为0.3
jpg_quality:设定输出图片的质量,范围为0到100,默认为80,越大质量越好
'''

# 加载类别标签文件
LABELS = open(label_path).read().strip().split("\n")
nclass = len(LABELS)

# 为每个类别的边界框随机匹配相应颜色
np.random.seed(42)
COLORS = np.random.randint(0, 255, size=(nclass, 3), dtype='uint8')

# 载入图片并获取其维度
base_path = os.path.basename(pathIn)
img = cv2.imread(pathIn)
(H, W) = img.shape[:2]

# 加载模型配置和权重文件
print('从硬盘加载YOLO......')
net = cv2.dnn.readNetFromDarknet(config_path, weights_path)

# 获取YOLO输出层的名字
ln = net.getLayerNames()
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]

# 将图片构建成一个blob,设置图片尺寸,然后执行一次
# YOLO前馈网络计算,最终获取边界框和相应概率
blob = cv2.dnn.blobFromImage(img, 1 / 255.0, (416, 416), swapRB=True, crop=False)
net.setInput(blob)
start = time.time()
layerOutputs = net.forward(ln)
end = time.time()

# 显示预测所花费时间
print('YOLO模型花费 {:.2f} 秒来预测一张图片'.format(end - start))

# 初始化边界框,置信度(概率)以及类别
boxes = []
confidences = []
classIDs = []

# 迭代每个输出层,总共三个
for output in layerOutputs:
    # 迭代每个检测
    for detection in output:
        # 提取类别ID和置信度
        scores = detection[5:]
        classID = np.argmax(scores)
        confidence = scores[classID]

        # 只保留置信度大于某值的边界框
        if confidence > confidence_thre:
            # 将边界框的坐标还原至与原图片相匹配,记住YOLO返回的是
            # 边界框的中心坐标以及边界框的宽度和高度
            box = detection[0:4] * np.array([W, H, W, H])
            (centerX, centerY, width, height) = box.astype("int")

            # 计算边界框的左上角位置
            x = int(centerX - (width / 2))
            y = int(centerY - (height / 2))

            # 更新边界框,置信度(概率)以及类别
            boxes.append([x, y, int(width), int(height)])
            confidences.append(float(confidence))
            classIDs.append(classID)

# 使用非极大值抑制方法抑制弱、重叠边界框
idxs = cv2.dnn.NMSBoxes(boxes, confidences, confidence_thre, nms_thre)

# 确保至少一个边界框
if len(idxs) > 0:
    # 迭代每个边界框
    for i in idxs.flatten():
        # 提取边界框的坐标
        (x, y) = (boxes[i][0], boxes[i][1])
        (w, h) = (boxes[i][2], boxes[i][3])

        # 绘制边界框以及在左上角添加类别标签和置信度
        color = [int(c) for c in COLORS[classIDs[i]]]
        cv2.rectangle(img, (x, y), (x + w, y + h), color, 2)
        text = '{}: {:.3f}'.format(LABELS[classIDs[i]], confidences[i])
        (text_w, text_h), baseline = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 2)
        cv2.rectangle(img, (x, y-text_h-baseline), (x + text_w, y), color, -1)
        cv2.putText(img, text, (x, y-5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 2)

# 输出结果图片
if pathOut is None:
    cv2.imwrite('with_box_'+base_path, img, [int(cv2.IMWRITE_JPEG_QUALITY), jpg_quality])
else:
    cv2.imwrite(pathOut, img, [int(cv2.IMWRITE_JPEG_QUALITY), jpg_quality])`

来测试一下:

pathIn = './test_imgs/test1.jpg'
pathOut = './result_imgs/test1.jpg'
yolo_detect(pathIn,pathOut)
>>> 从硬盘加载YOLO......
>>> YOLO模型花费 3.63 秒来预测一张图片

pathIn = './test_imgs/test2.jpg'
pathOut = './result_imgs/test2.jpg'
yolo_detect(pathIn,pathOut)
>>> 从硬盘加载YOLO......
>>> YOLO模型花费 3.55 秒来预测一张图片

pathIn = './test_imgs/test3.jpg'
pathOut = './result_imgs/test3.jpg'
yolo_detect(pathIn,pathOut)
>>> 从硬盘加载YOLO......
>>> YOLO模型花费 3.75 秒来预测一张图片

K12500